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Abstract  

Toxic behavior in online multiplayer games continues to be a significant concern, affecting 

player experience, community integrity, and game longevity. While traditional approaches to 

toxicity detection have relied on supervised machine learning or manually engineered 

features, recent advancements in natural language processing offer a new frontier. This thesis 

presents a novel pipeline that leverages decoder-based Large Language Models (LLMs), 

specifically the Llama 3.1-8b-Instruct model, to detect toxic behavior in multiplayer game 

chat logs. The proposed system uses a two-stage LLM approach: (1) keyword extraction to 

identify game-specific jargon, meme terms, slang, and non-standard English expressions, and 

(2) toxicity prediction based on message content enriched by context-sensitive information 

retrieved from a custom-built vector database. 

The core innovation lies in our Retrieval-Augmented Generation (RAG) strategy, specifically 

a new variant called RAG-Keyword, which improves upon RAG-Token and RAG-Sequence 

methods by only retrieving semantic definitions for meaningful keywords. This approach 

preserves efficiency while enhancing interpretability and accuracy. The retrieval process is 

further optimized by incorporating a hybrid similarity metric that blends cosine similarity and 

a normalized Levenshtein distance to account for the misspellings and abbreviations common 

in high-speed gaming chat. This system allows the LLM to better contextualize unfamiliar or 

obfuscated toxic terms before making classification decisions. We use Pinecone to structure 

our vector database into namespaces segmented by game and region, enabling localization of 

meaning for slang and jargon, especially between Southeast Asia and Oceania. 

To evaluate the pipeline, a dataset of 150 real-world chat messages collected from four 

games. Counter-Strike, League of Legends, Teamfight Tactics, and Marvel Rivals data were 

annotated and used to test the model. The system achieves a Jaccard Similarity of 0.687 for 



keyword detection, demonstrating high fidelity with human annotations. For toxicity 

prediction, incorporating RAG led to a notable increase in recall for toxic messages from 0.86 

to 0.93, and an F1-score improvement from 0.72 to 0.74 for the minority toxic class, while 

maintaining strong performance on non-toxic samples. These improvements are critical in 

real-world settings where missing toxic messages carries high social cost. 

Additionally, the system incorporates Explainable AI (XAI) principles by requiring every 

toxicity prediction to include a human-readable rationale, thereby aiding in moderation 

decisions and increasing user trust. The use of few-shot prompting, lightweight models, and 

modular pipeline components ensures scalability, cost-effectiveness, and adaptability across 

different gaming platforms and regions. 

This work contributes not only a functional prototype for real-time toxicity detection, but also 

introduces a scalable and linguistically robust framework that balances accuracy, 

interpretability, and resource constraints. Future improvements include dynamically 

identifying new keywords with low similarity scores by searching social media for context 

and using LLMs to extract definitions. The system can also be extended to voice data via 

speech-to-text and enhanced with batch message processing for improved accuracy, though 

both were limited by data constraints in this project. Ultimately, this project takes into 

account the linguistically unique issues and limitations of gaming, and utilises well-thought 

out methods to addresses these issues and limitations to form LLM-based solutions.  

  



1 Introduction  

Disclaimer: This paper consists of vulgar language and sexual representations in text. 

Such content involved is used as examples to explain concepts or as criteria for our 

objectives. 

Toxicity in online gaming refers to behaviours such as harassment, hate speech, and disruptive 

conduct that negatively impact players' experiences. (Robertson, 2020) It has been a problem 

ever since the introduction of competitive multiplayer gaming. Additionally, toxicity can create 

unwelcoming environments, discouraging participation from women and minority groups, and 

potentially affecting their mental health (Robertson, 2020). Moreover, there have been 

instances whereby players were unfairly penalized due to misinterpretations. For example, 

players in League of Legends have reported suspensions for toxicity despite not being engaged 

in toxic behaviour, highlighting the challenges in these automated moderation systems 

(Unbanster, n.d.).   

In this paper, we discuss utilising Retrieval-Augmented Generation (RAG) in this unique use 

case with a few considerations in order to better toxicity detection systems that are 

implemented in different multiplayer games: 

1. Gamers often make more mistakes and abbreviate more words due to the fast-paced nature 

of in-game communication. Gamers also often try to obfuscate messages in efforts to dodge 

detection. Therefore, we introduce alternative objectives for us to account for such phenomena. 

  



 

Figure 1: Toxic conversation between users “riival” and “aiukhgiang”. “aiukhgiang” 

obfuscates their messages by adding spaces between the letters “fuc” and “k”. 

2. Toxicity is often hard to catch in different contexts, with different societies using words 

differently. Sometimes, even with the words that exist within linguistically similar societies 

(e.g. Australia & the United States), different words can be used in different settings. One 

such example is use of the word “cunt”, whereby Australians often use the word in casual 

settings while Americans would regard the word as highly offensive.  

3. Lastly, we consider that game toxicity is often reported, but the report is not immediately 

acted on. Therefore, we disregard the speed needed during RAG and focus solely on the metrics 

of better toxicity predictions.  

  



2 Literature Review  

In this section, 2 papers and their methodologies to detect toxicity in multiplayer gaming are 

reviewed. Firstly, a paper in 2014 called “STFU NOOB!: Predicting crowdsourced decisions 

on toxic behaviour in online games behaviour in online games” by Jeremy Blackburn in the 

University of South Florida and Haewoon Kwak from Telefonica Research is reviewed. They 

utilise the now-defunct League of Legends (LoL) Tribunal, which is a crowdsourcing system 

to judge whether reported players should be punished (Blackburn et al., 2014). The paper 

explores in-game behavioural features such as player performance metrics, chat logs, and user 

reports to develop a Random Forest classifier for toxicity prediction. The data that was utilised 

is a mixture of textual data (such as user reports and chat logs) as well as tabular data (such as 

in-game performance statistics) (Blackburn & Kwak, 2014), which is out of the scope for this 

project. Moreover, the use of traditional machine learning techniques disregards the use of new 

vocabulary that will be used in text, and therefore would require a lot of retraining every time 

new game-specific jargon appears. Depending on the frequency of updates which leads to this 

game-specific jargon, this could potentially lead to frequent retraining, which will be a huge 

waste of resources. Regardless, the literature review of this paper shows that traditional 

machine learning can be used to predict game toxicity and achieve high results.  

Secondly, a paper in 2024 called “Game On, Hate Off: A Study of Toxicity in Online 

Multiplayer Environments” by Yang (2024) was reviewed. The paper investigates toxicity 

trends in multiplayer games by analysing 8 months of chat data from two Ubisoft games, For 

Honor and Rainbow Six Siege (Yang, 2024). The paper utilises millions of chat messages 

annotated using a structured framework for toxic content, distinguishing between different 

types of harmful speech including hate speech, threats and harassment. The paper implements 

a RoBERTa-base transformer model that is finetuned on labelled toxicity datasets from 



Ubisoft’s games (Yang, 2024). The RoBERTa-base transformer model utilises the encoder-

decoder architecture of the proposed transformer model in “Attention Is All You Need”. The 

model is first pre-trained with unlabelled chat data with the objective of masked language 

modelling, where a model predicts masked or hidden words in a sentence with respect to the 

surrounding context. They then fine-tune on labelled toxicity data categorized into different 

severities, defining the problem with the objective of multi-class classification.  This project 

differs from the second paper in a few ways. Firstly, we do not train a model on our own and 

instead utilise pre-trained large language models (LLMs). Therefore, while the paper’s defined 

problem might be the same as this project, our project does not utilise supervised or 

unsupervised training methods to develop a model from scratch. Instead, our project leverages 

pre-trained large language models and utilises Retrieval-Augmented Generation as a prompt 

engineering method to further improve prediction accuracy. Secondly, the model architecture 

is different from the models used in our project. As mentioned, the RoBERTa-based 

transformer model utilises the encoder-decoder architecture. However, the models that are 

being used for this project are transformer models that utilise the decoder architecture. They 

differ in the parts of the transformer that are being activated. The RoBERTa-based transformer 

model utilises the whole transformer architecture, while decoder-based transformer models 

only use the latter half of the transformer architecture. Regardless, the literature review of this 

paper shows that transformer-based models are feasible for toxicity classification, and therefore 

we will use decoder-based models for our approach. 

  



3 Theory: Encoder-Decoder Transformers VS 

Decoder-only Transformers 

In this section, we discuss the difference between encoder-decoder transformers and decoder-

only transformers. The original transformer consists of an encoder, which takes in the input 

sequence which are converted to embeddings, before combining with positional encodings and 

feeding it through a feed-forward network consisting of Multi-Head Attention layers (Vaswani 

et al., 2017). The decoder layer first processes the input token-by-token, and alongside the 

positional encoders, feeds both through a masked multi-head attention layer before another 

multi-head attention layer, finally ending off with a feed forward network. For models like 

BERT and RoBERTa, where it utilises both the encoder and decoder, the multi-head attention 

layer takes in input from the encoder. Moreover, the input for encoders and decoders for that 

architecture will not be the same. They are usually inputs that are shifted 1 step forward. The 

architecture has been given below: 

 

Figure 2: Transformer encoder-decoder architecture. Source: Vaswani et al., 2017  



However, for decoder-based models only such as GPT, Claude, and Llama, it does not include 

input from encoders, and the model only relies on self-attention to process its input and generate 

output. The input for decoders is also not shifted a step forward, as compared to those of the 

encoder-decoder architecture.  

 

Figure 3: Transformer decoder architecture. Source: Wolfe, C. (2023). Decoder-Only 

Transformers: The Workhorse of Generative AI. Retrieved from 

https://cameronrwolfe.substack.com/p/decoder-only-transformers-the-workhorse 

While transformer models that utilise encoder models are generally more effective in 

classification-based objectives, given different tricks such as few-shot learning as well as 

prompt engineering, we are able to improve the performance of a decoder-based model to be 

as effective as models utilising encoders in classification-based objectives.  We use few-shot 

learning in our prompts for our prediction. 



4 Process 

In this section, we talk about the mathematics behind the RAG mechanism, as well as the 

adjustments made to normal RAG systems to better accommodate our problem. 

4.1 Overall Process 

Our aim is to simulate an Application Programming Interface (API) that is developed to predict 

game toxicity. Once a player has been reported in-game by other players (of which we will call 

the offender), the API will be called. The offender’s messages will then be sent through the 

API to extract the keywords from the message itself. We use LLMs for the task of keyword 

extraction as we will need to extract out words, specifically game-specific jargon, that the 

model does not recognise. These keywords will be then queried into a vector database, 

consisting of the embeddings and the metadata of the game-specific jargon. As players might 

not type the correct word due to mistakes made in the heat of the moment, we also include 

word edit distance as a metric to determine the similarity of the word. We create the vector 

database on our own as there is currently no available market option that supports this 

configuration. Lastly, we add the metadata of the word most similar to the keyword into another 

prompt that is fed into a new instance of a model to determine whether the offender is toxic.  

Secondly, we use LLMs for the task of toxicity prediction, whereby we prompt engineer our 

query to predict whether the messages are toxic or not. If the offender has been deemed to be 

toxic in-game, we will return both the result and the offending messages that have been written 

during the game itself. If the offender has otherwise not been deemed toxic during the game, 

we will only return the result itself. To achieve this aim, we build a pipeline that consists of 

LLMs to achieve two tasks. While we do not have the exact format of the data being sent 

through games, we simulate the data being sent with the fields ‘user’, ‘message’ and ‘game’ 

for every message in a game session.  



4.2 Keyword Extraction 

We first utilise LLMs to extract the key words of a message itself. With the data that we have 

available, we establish the following rules to extract said key words: 

1. Common Gaming Phrases - frequently used expressions in online multiplayer games 

that reflect sportsmanship or game status. 

Example: "gg", "gl", "hf", "nt", "ez", "lol", "wp" 

2. Game-Specific Actions - terms that describe in-game activities or player roles 

commonly encountered during gameplay. 

Example: "planting", "defusing", "save", "heal", "heals", "dps" 

3. Character or Ability Names - names of in-game characters or special abilities 

unique to certain games. 

Example: "spiderman", "psylocke", "hawkeye", "jeff" 

4. Internet Slang and Meme Words - informal expressions or meme-related terms that 

have gained popularity in gaming and online communities. 

Example: "goat", "lmao", "yawn", "noob" 

5. Non-Standard English Terms - words that are not typically found in standard 

English dictionaries and often reflect regional slang or foreign expressions. 

Example: "chao", "kaopei", "basah" 

The keywords are not usually repeated per message as it is typically not common behaviour 

from gamers. However, in the case of such an event, the keywords that have been repeated 

will be preprocessed by the LLM to exclude any duplicates.  

All keywords must be extracted without applying stemming or lemmatization (e.g. "heal" and 

"heals" are treated as distinct terms). The matching process is case-insensitive, and all 

punctuation should be stripped from the message before keyword comparison. If a chat 



message contains no keywords from the whitelist, the result should be an empty list. The final 

output must be formatted in JSON, with each object containing two keys: "message", 

representing the original chat message, and "keywords", representing a list of matched 

keywords.  

  



4.3 Retrieval-Augmented Generation (RAG) 

Retrieval-Augmented Generation (RAG) is used as a technique to provide more context for the 

LLM. It retrieves a document for each sequence of words (more commonly known as query to 

the layman), or for each token in the query itself. It retrieves the top-k documents (where k is 

defined by the user) and uses these retrieved documents as additional context in order to 

generate more accurate, relevant and factually grounded responses. Retrieval-Augmented 

Generation (RAG) is defined as two formulas in “Retrieval-Augmented Generation for 

Knowledge-Intensive NLP Tasks”, one for a sequence of words (known as RAG-Sequence) 

and one for each token in the query itself (known as RAG-Token). We will introduce both 

models in our project, but will also discuss the strengths and weaknesses of both models. We 

will then introduce our new model, RAG-Keyword, that utilises the strengths of both models 

for our use case.  

4.3.1 RAG-Token Model  

The probability of generating the output sequence 𝑦 given the input 𝑥 using RAG-Token is 

approximated by the product of the sum of the retriever probability 𝑝𝜂(𝑧 ∣ 𝑥) multiplied by 

the generator probability 𝑝𝜃(𝑦𝑖 ∣ 𝑥, 𝑧, 𝑦1:𝑖−1) for each individual token, from the first to the 

𝑁th token in 𝑦. This is expressed as: 

𝑝RAG-Token(𝑦 ∣ 𝑥) ≈∏ ∑ 𝑝𝜂
𝑧∈top-𝑘(𝑝(⋅∣𝑥))

𝑁

𝑖=1

(𝑧 ∣ 𝑥) 𝑝𝜃(𝑦𝑖 ∣ 𝑥, 𝑧, 𝑦1:𝑖−1) 

The retriever probability 𝑝𝜂(𝑧 ∣ 𝑥) is defined as the probability assigned by the retriever (with 

parameters 𝜂) of selecting document 𝑧 given the input 𝑥. 



The generator probability 𝑝𝜃(𝑦𝑖 ∣ 𝑥, 𝑧, 𝑦1:𝑖−1) is defined as the probability assigned by the 

generator (with parameters 𝜃) for producing the individual token 𝑦𝑖, conditioned on the input 

𝑥, the retrieved document 𝑧, and all previously generated tokens 𝑦1, 𝑦2, … , 𝑦𝑖−1. 

On a practical basis, we use an example to denote the RAG-Token model. Given the example 

and the LLMs that we utilise, we realise that the model will break down the whole word to 

even smaller sub-word tokens instead of typical processing that takes in each word as a token. 

Let us use the example “bro ur blind he was at stairs???” to process the whole model.  

Therefore, the steps are as such:  

1. We first need to preprocess the text data into tokens.Therefore, for the sentence 

above, this is broken into sub-word tokens, i.e. ["bro", "ur", "blind", "he", "was", "at", 

"st", "airs", "?", "?", "?"] 

2. Each of those tokens will be converted into embeddings before it independently triggers 

a document retrieval from a vector database. Even super small subword tokens such as 

“ur” and “?” will trigger the document retrieval. For our case, the documents that we 

retrieve are meanings of the tokens themselves.  

3. After that, the model will combine the input, the token-specific retrieved document as 

well as its previous outputs. In our case, there is no previous output as every time we 

call the model, we initialise a new instance of the model.  

  



The flow of the model is visualised as such: 

 

Figure 4: RAG-Token Model Workflow Visualisation 

However, there are a few problems with the RAG-Token model. Firstly, retrieving a document 

for each token, especially for LLM-based preprocessing, will also include super small sub-

word tokens, as well as semantically weak sub-words. Therefore, this leads to unnecessary 

retrieval overhead, and potential context noise.  

Secondly, some gaming terms are not handled correctly during the model’s preprocessing 

phase. Since large language models apply generic tokenization and normalization rules, certain 

game-specific jargon may be improperly split, altered, or overlooked. This leads to inaccurate 

interpretation or missed context during inference.  

 



Thirdly, RAG-Token treats all tokens equally during retrieval, without considering their 

relative importance within the input. In practice, not all tokens contribute equally to the 

intended meaning of a query. For example, retrieving documents for generic tokens like “have” 

or “does” offers little value compared to retrieving for terms like “Psylocke” or “ultimate 

ability.” This uniform treatment prevents the model from prioritizing contextually important 

tokens, which can dilute the relevance of retrieved information and reduce prediction quality.  

  



4.3.2 RAG-Sequence Model 

To provide an alternative model for RAG, we present the RAG-Sequence Model, which 

retrieves only one document for each sequence of text. The RAG-Sequence model is defined 

mathematically as follows: 

𝑝RAG-Sequence(𝑦 ∣ 𝑥) ≈ ∑ 𝑝𝜂
𝑧∈top-𝑘(𝑝(⋅∣𝑥))

(𝑧 ∣ 𝑥) 𝑝𝜃(𝑦 ∣ 𝑥, 𝑧)

= ∑ 𝑝𝜂
𝑧∈top-𝑘(𝑝(⋅∣𝑥))

(𝑧 ∣ 𝑥)∏𝑝𝜃

𝑁

𝑖=1

(𝑦𝑖 ∣ 𝑥, 𝑧, 𝑦1:𝑖−1)

 

The probability of generating the output sequence 𝑦 given the input 𝑥 using RAG-Sequence 

is approximated by the sum of the retriever probability 𝑝𝜂(𝑧 ∣ 𝑥) multiplied by the generator 

probability 𝑝𝜃(𝑦 ∣ 𝑥, 𝑧) for each retrieved document 𝑧 from the top-𝑘 most relevant 

documents. 

The generator probability 𝑝𝜃(𝑦 ∣ 𝑥, 𝑧) is further decomposed into the product of token-level 

probabilities from the first to the 𝑁th token in 𝑦. Each token 𝑦𝑖 is generated based on the input 

𝑥, the retrieved document 𝑧, and all previously generated tokens 𝑦1, … , 𝑦𝑖−1. 

Meanwhile, the retriever probability 𝑝𝜂(𝑧 ∣ 𝑥) is defined as the probability assigned by the 

retriever (with parameters 𝜂) of selecting document 𝑧 given the input 𝑥. 

Once again, we use the example “bro ur blind he was at stairs???” to process the whole model. 

Therefore, the steps are as such:  

1. We first need to preprocess the text data into tokens. Therefore, for the sentence above, 

this is broken into sub-word tokens, i.e. ["bro", "ur", "blind", "he", "was", "at", "st", 

"airs", "?", "?", "?"]. 

2. Unlike RAG-Token, RAG-Sequence performs a single retrieval for the entire input 

query. The input sentence is first converted into a single embedding, and the top-k most 



relevant documents are retrieved based on this full sentence embedding from the vector 

database. In our case, the document that we retrieve are from meanings of the keywords 

likely present in the sentence. 

3.  After that, the model uses the same retrieved document(s) as context for generating all 

tokens in the output sequence. Each token is generated based on the original input, the 

shared retrieved context, and previously generated tokens. However, in our case, there 

is no previous output as every time we call the model, we initialise a new instance of 

the model. Therefore, all tokens are generated in one go using the same context. 

 

Figure 5: RAG-Sequence Model Workflow Visualisation 

The RAG-Sequence model does solve some of the problems detailed in the previous section. 

Since it only calls the vector database once, this will not lead to unnecessary retrieval overhead 

and reduce potential context noise. However, it creates new problems that is inappropriate for 

this use case.  



Firstly, while it results in improved efficiency, it is insufficient for our use case. Most of the 

text in toxic messages use game-specific or region-specific jargon, and therefore one retrieval 

will limit the model’s ability to incorporate the diverse contextual information needed to 

accurately interpret such terms.  

It also does not solve the problem of generic tokenization and normalization rules and does not 

consider its relative importance within the input itself. In fact, it overvalues the specific 

message’s semantic meaning when for this problem, it would be much more effective to get 

the meaning of keywords not understood by the LLM.  

Therefore, we develop the RAG-Keyword Model for us combine the strengths of both models, 

to provide us a model that would fit our use case best.   

  



4.3.3 RAG-Keyword Model 

Since for our approach, we do not need to retrieve documents for every single token in the 

query itself, therefore we slightly adjust the definition to better suit our objective. 

RAG-Keyword utilises the same mechanism as RAG-Token, but we do not call on RAG for 

each token, instead only on a subset of words in the query deemed keywords. 

Therefore, we define the RAG-Keyword model as follows: Given input 𝑥, we have a 

generated sequence 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑁). Assume a set of indices 𝐽 ⊆ {1,… , 𝑁} corresponding 

to the positions of identified keywords. Then the probability of generating the output 

sequence 𝑦 given input 𝑥 is approximated as: 

𝑝RAG-Keyword(𝑦 ∣ 𝑥) ≈∏{
∑ 𝑝𝜂

𝑧∈top-𝑘(𝑝(⋅∣𝑥,𝑦𝑖))

(𝑧 ∣ 𝑥, 𝑦𝑖) 𝑝𝜃(𝑦𝑖 ∣ 𝑥, 𝑧, 𝑦1:𝑖−1), if 𝑖 ∈ 𝐽

𝑝𝜃(𝑦𝑖 ∣ 𝑥, 𝑦1:𝑖−1), otherwise

𝑁

𝑖=1

 

The probability of generating the output sequence 𝑦 using the RAG-Keyword model is 

approximated by multiplying probabilities across each token from the first to the 𝑁th token. 

These probabilities are defined by a piecewise function: 

 If the token is a keyword (i.e., 𝑖 ∈ 𝐽): we sum over the top retrieved documents 

relevant to the keyword 𝑦𝑖. The final probability is the product of the retriever 

probability 𝑝𝜂(𝑧 ∣ 𝑥, 𝑦𝑖), which represents the likelihood of selecting document 𝑧 

given both 𝑥 and the keyword 𝑦𝑖, and the generator probability 𝑝𝜃(𝑦𝑖 ∣ 𝑥, 𝑧, 𝑦1:𝑖−1), 

which represents the likelihood of generating token 𝑦𝑖 given the context. 

 If the token is not a keyword (i.e., 𝑖 ∉ 𝐽): no retrieval is performed. We directly use 

the generator probability 𝑝𝜃(𝑦𝑖 ∣ 𝑥, 𝑦1:𝑖−1), computed without any external context. 



The final sequence probability is obtained by multiplying all token-level probabilities 

together. 

We once again use the example “bro ur blind he was at stairs???” as an example of using RAG-

Keyword. In this case, we assume that the keywords retrieved by the LLM is “blind” and 

“stairs”. Therefore, the steps are as such:  

1. We first preprocess the text data into words instead of tokens. Therefore, for the 

sentence above, this is broken into words, i.e. ["bro", "ur", "blind", "he", "was", "at", 

"stairs", "???"]. 

2. Instead of retrieving a document for every token, we use a keyword extraction model 

to identify which words are meaningful and relevant to our use. The criteria are defined 

in the section 4.2 above. Only the words identified as keywords will trigger a document 

retrieval from the vector database. Words not identified as keywords (e.g., “he”, “was”, 

“???”, etc.) will not initiate any retrieval. In our case, the documents retrieved are 

definitions or contextual meanings of the identified keywords. 

3. After that, the model will combine the input, the keyword-specific retrieved documents, 

and its previously generated outputs to generate each token. For non-keywords, 

generation proceeds without any retrieval. In our case, there is no previous output as 

every time we call the model, we initialise a new instance of the model. Therefore, all 

tokens are generated independently using the appropriate context. 



 

Figure 6: Proposed RAG-Keyword Workflow Visualisation 

The methodology is still the same as RAG-Token with the slight exception of retrieving the 

document if the word is deemed a keyword. However, it combines the strengths of RAG-

Token and RAG-Sequence whereby it cuts down on the calling costs, while making sure that 

there is still enough context for the query itself. It also solves the other two problems 

mentioned in the RAG-Token section, whereby the tokenization and normalization rules are 

not used since it specifies based on the words themselves. Lastly, there is a weight to the 

keywords and therefore leads to the consideration of relative importance within the input.  

  



4.3.4 Custom Scoring Objective For RAG-Keyword 

In this section, we discuss the new objective introduced into RAG-Keyword. As mentioned in 

3.3.3, RAG will take the document that is best suited to the keyword itself. Let us 

mathematically define RAG and showcase changes to it.  

Let 𝑓enc(𝑞) be the query embedding for the original query 𝑞, 𝑓enc(𝑐𝑖) be the embedding of 

chunk 𝑐𝑖, and 𝑐∗ be the most relevant chunk with the highest cosine similarity: 

𝑐∗ = argmax
𝑐𝑖∈𝒞

𝑓enc(𝑞) ⋅ 𝑓enc(𝑐𝑖)

∥ 𝑓enc(𝑞) ∥ ∥ 𝑓enc(𝑐𝑖) ∥
 

We will then concatenate 𝑐∗ with the user’s query into the LLM. Let 𝑓LLM  be the large 

language model, and 𝑎 be the generated response: 

𝑎 = 𝑓LLM(concat(𝑐∗, 𝑞)) 

The concatenation function is defined as: 

concat(𝑐∗, 𝑞) = {𝑐1
∗, 𝑐2

∗, … , 𝑐𝑚
∗ , 𝑞1, 𝑞2, … , 𝑞𝑛} 

Thus, the full RAG process can be rewritten as: 

𝑎 = 𝑓LLM (concat (argmax
𝑐𝑖∈𝒞

𝑓enc(𝑞) ⋅ 𝑓enc(𝑐𝑖)

∥ 𝑓enc(𝑞) ∥ ∥ 𝑓enc(𝑐𝑖) ∥
, 𝑞)) 

However, for our use case, we recognise that gamers often type rapidly, introducing spelling 

mistakes. This alters the semantic meaning of words, potentially leading to incorrect keyword 

definition retrieval. To mitigate this, we introduce Levenshtein distance as an additional 

objective to minimize. It is defined recursively as: 



𝑑(𝑖, 𝑗) =

{
 

 
max(𝑖, 𝑗), if min(𝑖, 𝑗) = 0

min{

𝑑(𝑖 − 1, 𝑗) + 1
𝑑(𝑖, 𝑗 − 1) + 1
𝑑(𝑖 − 1, 𝑗 − 1) + 𝛿(𝑎𝑖 , 𝑏𝑗)

, otherwise
 

To normalize and align with the [0, 1] range of cosine similarity, we define Levenshtein 

similarity as: 

simlev(𝑞, 𝑐𝑖) = 1 −
𝑑(𝑞, 𝑐𝑖)

max(|𝑞|, |𝑐𝑖|)
 

We then combine cosine similarity and Levenshtein similarity into a unified score: 

score(𝑞, 𝑐𝑖) = 𝛼 ⋅
𝑓enc(𝑞) ⋅ 𝑓enc(𝑐𝑖)

∥ 𝑓enc(𝑞) ∥ ∥ 𝑓enc(𝑐𝑖) ∥
+ (1 − 𝛼) ⋅ (1 −

𝑑(𝑞, 𝑐𝑖)

max(|𝑞|, |𝑐𝑖|)
) 

Finally, we redefine the full RAG process with this hybrid score: 

𝑎 = 𝑓LLM (concat (argmax
𝑐𝑖∈𝒞

score(𝑞, 𝑐𝑖), 𝑞)) 

For our use case, we assign a coefficient 𝛼 = 0.7 to the cosine similarity (which captures 

semantic relevance) and 1 − 𝛼 = 0.3 to the Levenshtein similarity (which compensates for 

typographical variations typical in fast-paced game chats). 

  



4.3.5 Optimization Processes 

For RAG, we consider a few optimization processes in order to accommodate constraints as 

well as to optimize the speed for this process.  

Firstly, we consider that with the increase in the scale of the vector database, we are not able 

to query every single vector stored in the vector database. Therefore, we utilise the nearest-

neighbours technique in order to find the top-k vectors that have the highest cosine similarity 

to the word itself.  

 

Figure 7: Nearest-Neighbours Retrieval with Cosine Similarity. 

Nearest-Neighbours Retrieval is mathematically defined as follows: Let 𝑞 ∈ ℝ𝑑 be the 

query vector and let 𝒞 = {𝑐1, 𝑐2, … , 𝑐𝑛} ⊂ ℝ
𝑑 be the set of candidate vectors in the vector 

database. We define cos(𝑞, 𝑐𝑖) as the cosine similarity between 𝑞 and 𝑐𝑖, the exact 

formulation of which is provided in Section 4.3.4. 

  



Then, the top-𝑘 nearest neighbours of query 𝑞 are defined by: 

NN𝑘(𝑞) = arg max
𝑆⊂𝒞, |𝑆|=𝑘

∑cos

𝑐∈𝑆

(𝑞, 𝑐) 

This formulation seeks the subset 𝑆 of 𝒞 with exactly 𝑘 elements that maximize the total 

cosine similarity with the query vector 𝑞. In practice, this is used to identify the most 

semantically relevant vectors for retrieval-augmented generation tasks. 

Secondly, given the infrastructure that is optimised for vector retrieval, we are not able to 

calculate the Levenshtein distance alongside the cosine similarity. Therefore, we first 

calculate the cosine similarity between the keywords and the vectors. We get the top 2k 

vectors (instead of k vectors) and calculate the Levenshtein distances for each of the words 

associated with the vectors. We then rerank them to fulfil both the cosine similarity and 

Levenshtein distance objectives, to find the best word that fulfils both objectives.

 

Figure 8: Process of finding the custom scoring in practice 

  



4.4 Prediction  

Lastly, we utilise a LLM to predict whether the message is toxic or not. While there are 

different definitions of toxicity, for this thesis, we set these rules to define as toxic:  

1. Profanities that are aggressive to others - vulgar expressions intended to insult or 

provoke another person. 

Example: "fuck you", "stfu", "suck a dick" 

2. Hate speech or slurs - offensive language targeting someone's race, ethnicity, 

nationality, religion, or identity. 

Example: "china man", and other racial or religious slurs 

3. Personal insults - direct attacks on a person's abilities, intelligence, or worth, often 

used to demean them during gameplay. 

Example: "noob", "low iq", "get a life" 

4. Sexual harassment or violent remarks - sexually explicit or threatening messages 

intended to intimidate or offend. 

Example: "suck a dick", “your mum got owned last night?”  

5. Psychological attacks or ableist slurs - comments that mock mental health, 

cognitive abilities, or disabilities. 

Example: "brain disorder", "retard" 

With those criteria, if a message contains any of these toxic elements, it must be labelled as 

toxic. If the message does not contain any of these elements, it must be labelled as non-toxic, 

regardless of sarcasm, annoyance, or mild frustration. The final output must be formatted in 

JSON, with each object containing two keys: "message", representing the original chat 

message, and "toxicity", a Boolean value indicating whether the message is toxic (true) or 

non-toxic (false).   



5 Approach  

In this section, we detail the approach taken to create the best system to process our problems. 

Both keyword detection and toxicity prediction utilise LLMs in their process, and in our 

example, we use a Llama-3.1-8b model for keyword detection and toxicity prediction.  

5.1 Assumptions 

There are a few assumptions that we have made throughout this process when designing our 

approach, namely that: 

- Given the use of RAG in our system, we do not need to have a very powerful model to 

make predictions 

- Reports of toxicity is not expected to be followed up immediately, it can take time to 

do so 

- We want to cut the amount of money needed to process these predictions; therefore, we 

should not have a model that has too many parameters, which leads to higher costs. 

Therefore, we have chosen the Llama-3.1-8b-Instruct model for both keyword detection and 

toxicity prediction. The Llama-3.1-8b model follows a decoder-only model architecture and is 

trained on much lesser parameters than some of the stronger models by other companies such 

as OpenAI and Anthropic, and even its own company (Meta). Therefore, this model is not only 

capable enough for such tasks, but also cheap enough for the model to scale as it only costs 

$0.30 per million input tokens and $0.61 per million output tokens when hosted on Azure 

(PromptHub, 2024) as compared to larger and more performant models such as OpenAI’s GPT-

4o at $2.50 per million input tokens and $10 per million output tokens (OpenAI, 2025). It 

should also be noted that only toxicity prediction uses RAG as an additional system to improve 

its performance, as keyword detection is part of the step that leads to the RAG mechanism 

being activated in the overall flow.  



5.2 Dataset 

The dataset consists of 33 instances of games, with 150 messages altogether from the games 

themselves. These messages are taken from 4 games, namely Counter-Strike, League of 

Legends, Teamfight Tactics and Marvel Rivals. The columns of the dataset are as follows: 

- user: The username of the individual who sent the message. 

- message: The content of the message that was sent. 

- game: The specific game in which the message was sent. 

- toxicity: A score or label indicating the level of toxicity in the message.  

- keywords: Key terms or phrases extracted from the message.  

- location: The region of the game played (e.g. Southeast Asia, Australia) 

These datapoints were collected from real-time game matches, with interactions from real 

players. These datapoints are collected from two regions, mainly Singapore as well as Oceania 

(in this case, Australia only). These datapoints were collected from 1st January 2025, until 6th 

April 2025. Out of the 150 messages, 128 messages were manually labelled to not be toxic, 

while 22 messages were manually labelled to be toxic. The dataset consists of a few non-

English languages, such as Vietnamese and Bahasa Melayu. Some of the messages consisted 

a few ways to mitigate the current guardrails of the games such as changing certain letters of 

offensive words, of which the Large Language Model processes them into actual words instead 

of its hidden form.   

Each instance of conversation is first converted into a JSON formal with the above columns as 

keys. We then process each conversation through a script “process.py” before combining it 

into a dataset named “processed_data.csv”. We then use some columns of each datapoint to 

feed into the LLM and the vector database itself.   

  



5.3 Keyword Detection 

For keyword detection, we merely use the LLM without any RAG. We first prompt the model 

with the prompt consisting of a few examples for few-shot learning in “keyword.txt” 

(Appendix A). We then feed it through the model to give us the JSON with both the “message” 

and “keywords” keys. We take the “keywords” keys and compare it to the processed_data.csv 

with the Jaccard Similarity metric. 

 

5.4 Vector Database 

To perform RAG, we will need to use a vector database to perform RAG. We utilise Pinecone 

for RAG due to the capabilities needed for our project. Firstly, as mentioned before, our data 

consists of a few columns that we keep, simulating real-world data. These columns help us 

with finding the semantic meaning of the messages, to more accurately determine whether 

these messages are truly toxic or not as certain regions and games might use words differently.  

Pinecone allows us to do this easily as its vector databases allow us to further separate vector 

databases into different namespaces, akin to tables in normal SQL databases. We use .csv files 

that have the columns “word” and “meaning” (Appendix B). The names of the files themselves 

are the namespaces of the vector database itself. We also have a general namespace that stores 

game-specific jargon that is not used uniquely in any game. With this, every time we classify 

a message, we also take the region and the game and call the general namespace, which consists 

of words that are universal in the context of gaming. This allows us to call the relevant 

namespaces of the region and game of the message itself. Based on that, we can get the 

semantic meanings of the keywords from the message more efficiently.  

 

  



5.5 Toxicity Prediction 

 For the toxicity prediction model, we populate it with the prompt in prompt.txt (Appendix A). 

There are two ways whereby we use the model. Firstly, we utilise the model as is, without the 

use of RAG in our toxicity prediction. This is to provide a baseline for our model in order to 

show that RAG will be able to help us give more accurate models. Secondly, we utilise the 

keywords retrieved from the keyword detection models and retrieve it with the vector database. 

After we have retrieved the definitions with a high similarity score, we will then add the 

definitions together with the prompt itself before feeding the new concatenated query through 

the model to give the prediction. The flow of the experiments is shown below: 

 

Figure 9: Difference in experiments as a basis for comparison 

We then use the metrics that we will define soon in Section 5 to determine the prediction quality 

before RAG and after RAG. 



5.6 Explainable AI 

For our toxicity prediction prompt (Appendix A), we include a section that explicitly states the 

reason for flagging or banning a message as toxic. This aligns with the principles of Explainable 

AI (XAI), ensuring that users and moderators receive clear, interpretable justifications for each 

model decision.  

By incorporating retrieved definitions of game-specific jargon and region-specific slang into 

the prompt, the model is better equipped to generate transparent explanations — for example, 

specifying whether the flagged term was identified as hate speech, a personal insult, or a 

psychological slur. This not only improves user trust in the system but also allows developers 

or moderators to audit model decisions more effectively.  

Additionally, explainability is crucial in high-stakes environments such as online multiplayer 

games, where incorrect bans can damage user experience and community trust. Our design 

prioritizes interpretability without sacrificing model performance by leveraging prompt-based 

LLM reasoning alongside contextual grounding from the vector database.  

 

  

 

  



6 Results 

The results of the approach detailed in Section 4 are as follows. Firstly, let us define the metrics 

that we use to judge both our keyword detection and toxicity prediction tasks.  

6.1 Metrics 

6.1.1 Keyword Detection – Jaccard Similarity 

We compare the extracted keywords to a set of manually extracted keywords and use 

Jaccard Similarity metric to evaluate how effective the LLM is at identifying keywords. The 

Jaccard Similarity is defined as follows: 

Let 𝐾LLM  be the set of keywords extracted by the large language model and let 𝐾GT be the set 

of manually extracted keywords (i.e., ground truth). Then the Jaccard Similarity is defined as: 

Jaccard(𝐾LLM , 𝐾GT) =
|𝐾LLM ∩ 𝐾GT|

|𝐾LLM ∪ 𝐾GT|
 

Here, |𝐾LLM ∩ 𝐾GT| represents the number of correctly predicted keywords that overlap with 

the ground truth, while |𝐾LLM ∪ 𝐾GT| represents the total number of unique keywords across 

both sets.A higher Jaccard similarity indicates better agreement between the LLM’s 

predictions and the ground truth, reflecting more accurate keyword extraction performance. 

  



6.1.2 Toxicity Prediction – Precision, Recall & F1-Score 

We use a few data science metrics to determine the efficacy of our models. We first define 

said metrics. The metrics are precision, recall and F1-score and are defined as such:  

Let TP be the number of true positives, let FP be the number of false positives, and let FN be 

the number of false negatives. Then, the metrics are: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

where precision is the ratio of true positives to number of predicted positives, consisting of true 

positives and false positives. 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where recall is the ratio of true positives to number of actual positives, consisting of true 

positives and false negatives. 

 

F1-Score = 2 ⋅
Precision ⋅ Recall

Precision + Recall
 

Where the F1-score is the harmonic mean between precision and recall. 

Specifically, given the nature of the problem, the F1-score would naturally be the best metric 

to optimise for as we are looking to both accurately ban toxic players. However, apart from 

that, we deem current systems to lack enough context to be able to catch toxic messages. 

Therefore, we prioritise the recall of our system. Precision is also considered, as there have 

been cases of gamers being falsefully banned and therefore will be looked at with our results.   

  



6.2 Keyword Detection Results 

We calculate the Jaccard Similarity by averaging the Jaccard Similarities across our 150 

datapoints. From there, we can see that the Jaccard Similarity score achieved by our system is 

0.687, indicating a strong overlap between the predicted and actual keyword sets. In the 

context of text processing, this score reflects the model's effectiveness in capturing relevant 

and meaningful terms, with over two-thirds of the predicted keywords aligning with the 

ground truth. Such a level of similarity suggests that the system is consistently identifying 

core content features and demonstrates reliable semantic understanding. This result reinforces 

the model’s capability in handling keyword detection tasks with a high degree of accuracy 

and relevance and therefore will ensure that our RAG process will be reliable enough such 

that it can query keywords to help improve the metrics that we use for toxicity prediction.  

6.3 Toxicity Prediction Results  

With our system, we see an increase in some of the metrics mentioned in 5.1.2.  

Metric Base 

Precision 

RAG 

Precision 

Base 

Recall 

RAG 

Recall 

Base F1-

Score 

RAG F1-

Score 

Support 

False 0.96 0.98 0.88 0.87 0.92 0.92 122 

True 0.62 0.62 0.86 0.93 0.72 0.74 28 

Macro 

Average 

0.79 0.80 0.87 0.90 0.82 0.83 150 

Weighted 

Average 

0.90 0.91 0.87 0.88 0.88 0.89 150 

Table 1: Toxicity Prediction Results 

We first focus on the F1-score. For the False class, the F1-score remains unchanged at 0.92, 

indicating that the model continues to handle negative samples with a high degree of 

reliability. Notably, the True class saw an increase in F1-score from 0.72 to 0.74, a 

meaningful improvement considering the inherent challenge of identifying minority or 

positive cases. This gain reflects better overall performance in detecting the True class.  



Looking at the macro and weighted averages, we see further evidence of overall model 

improvement. The macro-average F1-score — which treats each class equally regardless of 

their frequency — increased slightly from 0.82 to 0.83. This rise reflects a more balanced 

performance across both the majority and minority classes, highlighting the model's improved 

ability to handle True cases without compromising performance on False cases.  

Meanwhile, the weighted-average F1-score, which accounts for class imbalance by giving 

more weight to the majority class, also improved from 0.88 to 0.89. This indicates that the 

model’s performance gains were not limited to niche cases but rather translated into a more 

robust and reliable classifier overall. 

We then move on to recall, which is the second most important metric to improve after F1-

Score. The model maintained a high recall for the False class (slightly decreasing from 0.88 

to 0.87), but achieved a significant improvement for the True class, increasing from 0.86 to 

0.93. This suggests that the updated model is now catching a greater number of true positives, 

which is especially valuable in our context of toxicity prediction. 

Lastly, let us look at precision. The model improved in identifying False class instances 

correctly, increasing from 0.96 to 0.98, while True class precision remained stable at 0.62, 

indicating no drop in the accuracy of its positive predictions despite the increased recall.  

In summary, the updated system demonstrates meaningful improvements in key performance 

metrics, particularly in handling the minority True class. The gains in recall and F1-score, 

combined with stable or improved precision, suggest that the model is now more effective at 

identifying true positives without compromising overall accuracy. The increase in both macro 

and weighted average F1-scores reinforces this trend, pointing to a more balanced and 

reliable model performance across classes.  

  



7 Conclusion  

This project proposed and evaluated a novel system for detecting game toxicity using LLMs 

enhanced by RAG mechanisms. Recognizing the limitations of existing models—especially 

in their failure to interpret game-specific or region-specific jargon accurately—we introduced 

a RAG-Keyword architecture that intelligently combines semantic relevance and character-

level similarity via cosine similarity and normalized Levenshtein distance. This hybrid 

objective significantly improved the model's ability to interpret informal, typo-prone 

messages in high-speed gaming environments. 

Through empirical evaluations on a multilingual, multi-regional dataset collected from real 

gameplay, the system demonstrated robust improvements in key performance metrics. The 

toxicity prediction component exhibited notable gains in recall and F1-score for minority 

classes without compromising the precision of its classifications. This reinforces the 

feasibility and practicality of deploying such a system in real-world gaming platforms where 

trust, fairness, and contextual nuance are essential.  

By designing a pipeline that integrates LLMs, semantic search, and explainable AI, this 

project not only advances the state-of-the-art in game toxicity detection but also lays the 

groundwork for scalable, interpretable, and culturally aware moderation systems. The 

approach balances computational efficiency and model performance, making it viable for 

widespread deployment in modern multiplayer environments. 

  



7.1 Code  

The codebase attached to this project is organized into several directories, each serving a 

distinct purpose in the development and analysis of this project. The directories are as such: 

1. data/ houses the dataset files in JSON format, as mentioned in Section 5.2. These files 

contain the raw data used for training and evaluating the toxicity detection models. 

2. vector/ contains scripts related to vector operations, which consists of upsert.py to 

insert the definitions (Appendix A) from .csv file, query.py for querying the vector 

database and clear_namespaces.py to clear namespaces in pinecone.  

3. process/ contains scripts to process the JSON files into a .csv file, which is being used 

for our experiments. 

4. prompts/ contains prompt templates as well as utils.py, which are utility function that 

are used to format the prompt templates to feed into the models for prediction. 

5. inference/ contains scripts for running inference on the trained models. The folder 

contains both keyword.py and prediction.py for these models. 

6. experiments/ is dedicated to running and documenting various experiments related to 

the project. Base_predictions.py executes the “Without RAG” workflow in Figure 9, 

while complete_workflow.py executes the “With RAG” workflow in Figure 9. Lastly, 

we store all of our results in the results sub-folder.   

The code is available at the following GitHub repository: https://github.com/kwangyy/game-

toxicity  

https://github.com/kwangyy/game-toxicity
https://github.com/kwangyy/game-toxicity


7.2 Further Improvements 

For this project, further improvements can be made to the system itself. With new features in 

game, there will be new game-specific jargon that might come out to address these features. 

The new jargon has higher probabilities to be pointed out as a keyword. Therefore, when there 

are continuous words that have been flagged as a keyword, yet the score is low (which signifies 

that there is a lack of similarity with any words in the vector database, we can identify it as a 

new keyword for us to find the meaning of. We can then search up the keyword online with 

context to the game or to the country in social media websites such as Reddit or Twitter to find 

similar pieces of media. After that, we are able to extract the definition of the keyword through 

a LLM, allowing us to be up to date with new keywords whenever new updates occur with 

these games.  

We are also able to extend this system to voice data, whereby we utilise a speech-to-text system 

in order for us to extract out the text. We then use the same system to identify keywords, as 

well as whether the person was being toxic. Due to the lack of data, we were not able to utilise 

this during this project.  

We can also process our messages in batches instead of single messages. This is so that this 

provides better accuracy given the previous messages it had access to. However, due to the 

small sample size of the dataset, we could not implement batch processing for this project.  

Lastly, with systems like these, there will be a high tendency for toxic players to continually 

obfuscate their messages to avoid detection. We can eventually feed the query into a LLM to 

rewrite it before we feed it through the rest of the pipeline in order to avoid this obfuscation. 

However, LLMs already do that quite well, where obfuscation techniques like leetspeak (e.g. 

H34LS PL34S3) and continuously adding spaces between words are processed behind-the-

scenes in order to predict toxic messages accurately.  
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Appendix A: Initial prompts 

Keyword prompt (keyword.txt) 

You are an expert keyword analyzer, with the task to analyze chat messages from online 

multiplayer games.  

For each message, determine which keywords, if any, are present. 

A keyword is a term that appears in a predefined whitelist.  

Extract it from the message if it matches any of the following criteria: 

- Common gaming phrases: "gg", "gl", "hf", "nt", "ez", "lol", "wp" 

- Game-specific actions: "planting", "defusing", "save", "heal", "heals", "dps" 

- Character or ability names: "spiderman", "psylocke", "hawkeye", "jeff" 

- Internet slang and meme words: "goat", "lmao", "yawn", "noob" 

- Words that are not commonly found in English: "chao", "kaopei", "xin", "bodoh", "nguyen", 

etc. 

Rules: 

- Strip punctuation and ignore case when matching keywords. 

- Do not perform stemming or lemmatization (e.g., "heal" and "heals" are different). 

- If no keywords are matched, return an empty list. 

- Do NOT return code of any sort, and return JSON only. The JSON definition has been 

provided for you below.  

Return a JSON consisting of the keys "message" and "keywords", where the "message" 

denotes the original message and the "keywords" are a list of keywords that have been 

predicted.  

Examples: 

{{ 

  "message": "GG everyone!", 

  "keywords": ["gg"] 

}} 

{{ 

  "message": "noob dps", 

  "keywords": ["noob", "dps"] 

}} 

{{ 



  "message": "Can you heal me hawkeye?", 

  "keywords": ["heal", "hawkeye"] 

}} 

{{ 

  "message": "xin chao" 

  "keywords": ["xin", "chao"] 

}} 

{{ 

  "message": "stop pushing alone", 

  "keywords": [] 

}}  

Toxicity Prediction Prompt (prediction.txt) 

You are an expert in predicting toxicity.  

Your task is to determine whether each message is toxic or non-toxic based on its content. 

You are to label the message as **toxic** if it contains any of the following: 

- Profanities that are aggressive to others (e.g., "fuck you", "stfu", "suck a dick") 

- Hate speech or slurs (e.g., "china man", offensive references to race or religion) 

- Personal insults (e.g., "noob", "low iq", "get a life") 

- Sexual harassment or violent remarks (e.g., "did your mum get owned") 

- Psychological attacks or ableist slurs (e.g., "brain disorder", "retard") 

There are definitions that may or may not be provided for you.  

If they are, use the keywords that are provided to you, and factor them into your decision in 

predicting toxicity. 

Return a reason (or reasons) why they are predicted toxic or they are not predicted toxic.  

Do NOT return code of any sort, and return JSON only. The JSON definition has been 

provided for you below.  

If the message does **not** contain any of the above, mark it as **non-toxic**, even if it is 

sarcastic or expresses frustration. 

Examples have been given to you:  

{{ 

  "message": "stfu stupid dog", 

  "toxicity": true, 

  "reason": "dog is being used as a derogatory term here, and stfu is aggressive to others." 



}} 

{{ 

  "message": "GG WP everyone!", 

  "toxicity": false, 

  "reason": "this is a wholesome comment that tells everyone it was fun to play with them." 

}} 

{{ 

  "message": "dps idiot can't even shoot", 

  "toxicity": true, 

  "reason": "this comment is toxic as the player is frustrated and is taking it out on the dps." 

}} 

{{ 

  "message": "bro we lost again lol", 

  "toxicity": false 

  "reason": "this is a negative comment, however it is not toxic as it could be that the player is 

frustrated" 

}}  



Appendix B: Words and meaning, per namespace 
Australia 

Word Meaning 

cunt can be affectionate or insulting depending 

on tone; common in aussie slang 

fuck the universal f-bomb; used for anger, 

emphasis, or insult 

shit general curse word; used to express 

frustration 

bloody mild swear word used for emphasis 

bastard insult implying someone is mean or cruel 

dickhead stupid or annoying person 

wanker jerk; often implies someone is self-

centered or irritating 

bugger mild expletive; can also mean 'damn' 

arsehole jerk, rude person 

dick insult for a rude or stupid person 

tosser similar to wanker; an idiot 

prick insulting term for a man 

drongo someone who is dumb or useless 

mong offensive term for someone acting stupid 

bitch offensive when used toward women; also 

used to insult someone acting weak 

 

Counter-Strike 

Word Meaning 

planting placing the bomb at the site 

defusing disarming the planted bomb 

eco saving money instead of buying weapons 

buying purchasing weapons, armor, or utility 

saving keeping your weapon for the next round 

pushing aggressively moving toward an area 

rotating moving to support another bomb site 

entrying being the first into a site 

lurking staying behind to catch rotating enemies 

flanking attacking from behind 

boosting lifting a teammate to a higher spot 

peeking quickly exposing yourself to check a spot 

spraying firing continuously 

tapping firing one bullet at a time 



clearing checking a location for enemies 

shouldering faking a peek to bait a shot 

jump spotting jumping to gain vision without being 

exposed 

mollying throwing a molotov 

nading using a grenade 

smoking deploying a smoke grenade 

flashing throwing a flashbang to blind enemies 

wallbanging shooting through walls 

jiggling quickly moving in and out of cover 

refragging trading a kill after a teammate dies 

anchoring staying on-site as the last line of defense 

 

General 

Word Meaning 

gg good game; used after matches 

gl good luck 

hf have fun 

nt nice try 

ez easy win; often used mockingly 

lol laughing out loud 

wp well played 

ff forfeit; surrender vote 

afk away from keyboard 

op overpowered 

nerf reduce the power of something 

buff increase the power of something 

carry someone who wins the game for the team 

feed dying repeatedly to the enemy 

tilt getting mentally frustrated or emotional 

camp waiting in one place to ambush 

bot bad player or AI player 

toxic rude or unsportsmanlike behavior 

main your favorite or most played character 

noscope shooting without aiming down sights 

headshot direct hit to the head 

frag kill or eliminate an enemy 

clutch winning a tough situation alone 

gank surprise attack on an enemy (usually with 

teammates) 



smurf high-level player using low-ranked 

account 

goat greatest of all time 

lmao laughing my ass off 

yawn used to mock boredom 

noob beginner or bad player 

sus suspicious 

cap lie or false 

flex showing off 

simp overly submissive for attention (often 

romantic) 

cringe embarrassing or awkward 

ratio reply gets more likes than the original post 

based confident, unapologetic (non-conforming) 

woke socially aware (positive or sarcastic) 

stan obsessive fan 

salty bitter or upset 

slay doing something really well 

lit exciting or cool 

dead so funny you 'died' laughing 

fire awesome or amazing 

clown someone who made a fool of themselves 

pog expression of excitement 

bet agreement or confirmation ('okay', 'sure') 

bruh expression of disbelief or frustration 

savage brutally honest or bold 

meme a humorous image, video, or text that 

spreads online 

 

League of Legends 

Word Meaning 

ganking ambushing a lane from the jungle 

farming killing minions for gold 

roaming leaving lane to assist other lanes 

diving attacking under enemy turret 

flashing using the flash summoner spell 

ulting using your ultimate ability 

zoning keeping enemies out of an area 

peeling protecting your carries by removing threats 

engaging starting a fight 



disengaging retreating from a fight 

tanking absorbing damage for your team 

healing restoring health 

shielding protecting teammates from damage 

ksing kill-stealing; taking a kill meant for 

someone else 

splitpushing pushing a side lane alone 

camping staying in one area to repeatedly gank 

leashing helping your jungler kill their first camp 

warding placing vision wards 

sweeping removing enemy wards 

freezing keeping the minion wave near your turret 

shoving quickly pushing the wave 

backing recalling to base 

scaling improving as the game progresses 

invading entering the enemy jungle early 

snowballing gaining momentum through early 

advantage 

 

Marvel Rivals 

Word Meaning 

adam cosmic warrior with resurrection and 

shielding powers 

blackpanther stealthy melee assassin with burst and 

agility 

blackwidow tactical fighter using gadgets and stealth 

capt shield-wielding frontline with defensive 

buffs 

cd cloak and dagger duo combining stealth 

and burst 

drstrange dimensional mage with portals and 

shielding 

groot tanky support who heals allies and roots 

enemies 

hawkeye ranged marksman with precision arrows 

and traps 

hela necromancer who summons undead and 

controls space 

hulk durable tank with slam and leap-based 

melee control 

torch ranged fire caster with aerial mobility and 

AoE 



invisible invisible support who shields and vanishes 

allies 

ironfist melee bruiser with chi-empowered strikes 

and mobility 

ironman armored DPS with repulsors and flight 

jeff land shark with bite attacks and pressure 

mobility 

loki trickster using illusions, stealth, and 

disorientation 

luna ice mage with ranged control and team 

buffs 

magik teleporting swordfighter with portals and 

dark magic 

magneto controller manipulating metal and 

battlefield layout 

mantis support who stuns enemies and heals 

teammates 

misterfantastic stretchy control support who zones and 

entangles 

moonknight stance-switching melee bruiser with burst 

combos 

namor amphibious tank with water attacks and 

movement 

peni ranged support using a spider mech to zone 

enemies 

psylocke fast assassin with psychic melee attacks 

and mobility 

punisher mid-range tactical shooter with gadgets 

and grenades 

thing durable brawler with slam-based crowd 

control 

rocket explosive trap-setting ranged DPS with 

high burst 

scarletwitch chaos caster with hexes and unpredictable 

AoE 

squirrel agile disruptor who summons squirrels and 

flanks 

spiderman agile hero with web-swinging, control, and 

mobility 

starlord mobile ranged blaster with jukes and AoE 

tools 

storm aoe mage with wind knockbacks and 

lightning damage 



thor melee bruiser with hammer throws and 

lightning burst 

venom brawler with lifesteal and aggressive melee 

control 

winter tactical fighter with rifle, grenades, and 

mobility 

wolverine melee tank with self-heal, slashes, and 

pursuit 

shooting firing your weapon or basic attack 

healing restoring health to teammates 

flanking sneaking around to attack from the side 

zoning controlling an area with abilities 

dodging avoiding incoming damage or crowd 

control 

blocking reducing or negating damage taken 

dashing quick movement to reposition or escape 

jumping vertical movement to reposition 

grappling using mobility tools to pull or swing 

ulting activating your ultimate ability 

scanning checking for enemy positions 

contesting actively stopping the enemy from 

capturing 

capturing taking control of a point 

defending holding a position or payload 

respawning returning to the game after being 

eliminated 

escorting guarding the payload or objective 

retreating falling back to regroup or heal 

engaging starting a team fight 

bursting dealing large amounts of damage in a short 

time 

dpsing continuously dealing damage over time 

tanking soaking damage for your team 

supportting assisting allies with healing or buffs 

shielding absorbing damage with barriers 

reviving bringing a fallen teammate back 

pinging marking a location or enemy for teammates 

 

Southeast Asia 

Word Meaning 

puki vulgar term for vagina 



babi pig; insult implying someone is dirty or 

lowly 

lanjiao penis (hokkien); very crude 

lj penis (hokkien); very crude 

cheebai vagina; vulgar term 

jibai vagina; vulgar term 

cb short for 'cheebai' (vagina); very vulgar 

kanina fuck your mother (hokkien); extremely 

offensive 

knn  fuck your mother (hokkien); extremely 

offensive 

kontol penis; crude insult 

anjing dog; used to call someone despicable 

ngentot to fuck; harsh insult 

jembut pubic hair; vulgar term 

putangina your mother's a wh*re; extremely vulgar 

gago idiot or stupid person 

leche damn; mild curse expressing frustration 

bobo dumb or unintelligent 

du ma fuck your mother; very vulgar 

cac dick; extremely crude 

nguyen  signifying a person from Vietnam; usually 

used as an insult 

dit me another form of fuck your mother 

co cho dog; derogatory term 

djt me may fuck your mom or you; vulgar insult 

troi oi  oh my god 

hee vagina; extremely rude 

hia bastard or jerk 

sat animal; used as an insult 

kwai buffalo; insult for someone stupid 

mae mueang your mother; rude insult 

pauk penis 

mee thu bastard 

myin horse; used to call someone stupid 

kyet chicken; mocking term 

ma le slut 

 

 

  



Teamfight Tactics 

Word Meaning 

rolling spending gold to refresh the shop 

econing saving gold to build interest 

leveling spending XP to reach a higher level 

rerolling low-level rolling for 1–2 cost units 

pivoting changing your comp mid-game 

slamming combining items early without waiting 

scouting checking enemy boards 

positioning arranging units on the board 

stacking putting items on a single carry 

sacking intentionally losing rounds to build 

economy 

streaking win or loss streak for extra gold 

spiking hitting a power spike from upgrades 

contesting competing with someone else for the same 

comp 

rolling down spending all your gold to hit upgrades 

open forting losing intentionally in early game 

selling removing units to get gold 

griefing denying units from others intentionally 

healing restoring team HP via augments or traits 

mana burning reducing enemy ability usage 

tanking placing units to absorb damage 

clumping grouping units close together 

cornering putting your carry in a corner for protection 

donkey rolling rolling without planning 

cheesing using a non-meta or off-beat strategy to 

win 

slow rolling saving gold and rolling above 50g for 

upgrades 
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